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ABSTRACT

It is shown that the arguments developed in Vol'pert and Hudjaev's paper
for the Cauchy problem and in the author's paper for the first boundary value

problem can be extended to other kinds of boundary value problems. As an

example, equations of the form

au _ a u) +
9xu- a ( t, ua tu (a(tx,u) o 0)

with the boundary conditions

a + f -0 (x io)

u-0 (x= 1)

and the initial condition

u -u0 (x) (t - 0)

are investigated, and the existence, uniqueness and continuous dependence on

the initial value of generalixeC solutions are proved under certain

conditions. In proving the existence, the key step is to establish estimates

on solutions u of regularized problem, especially the uniform estimate of

H J and .3xI.1

ANS (NOB) Subject Classifications% 35K60, 35K65

Key Words: quasilinear degenerate parabolic equations, nonlinear boundary
value problems, regularization, existence, uniqueness and
continuous dependence
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SIIFICANCE AND EXPLANATION

N/Using the theory of functions of bounded variation, Vol'pert and Hudjaev

successfully treated the initial-value problem for a class of degenerate

parabolic equations in one space dimension. Of particular interest was their

ability to incorporate even thecopletely degenerate case of a scalar

conservation law in the class they treated. The author subsequently treated

the first boundary value problem in a similar spirit and generality. The

current work shows that analogous results can be obtained for other boundary

conditions. As before, regularization is used to obtain existence results for

approximate problems. New estimates are obtained on the approximations which

allow passage to the limit.
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Zhuoqun Wu

11. Introduction

Par quasilinear equations of the form

0 I1) b (aLt~xu) _X1 + L f(tx.u) + ;(t.x,u)

with

a(t,x,u) ) 0

the Cauchy problem has been Investigated in I1I and the first boundary value problem in

(21, (3). in this paper, we will show that the arguments developed in (11-(31 can be

extended to other kinds of boundary value problems. As an example we consider (1.1) with

the boundary conditions

(1.2)0 a(t,x,u) 4h + f(t,x,u) - 0 (x - 0)

u 1.2)i -0 (x 1)

and the initial condition

(1.31 u - ux) t -W 0)

For simplicity, only homogeneous boundary conditions are dealt with here.

Let 6 - (0,T) x (0,1). Assume that the functions a, f and q are smooth for

It,x) e C6 and u e R.

The powblem ill be rmulated in a generalized sens as follows (with notations

rtefrnd 21.

Definition A function a e L (QT) is called the generalized eolution of

problem (1.1), (1(1.3) , it the following conditions are fulfilleds

.21

1) There exists a function 9 e L 2 m) uch that

Ovta q^txu -8 tK V#eC(

Sponsored by the United States Army under Contract no. DARG29-80-C-O041.
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where r(t,,u) - (t ,.u) and fm.xu) denotes the mem value of composition of

r(txu) and u(tex).

2) u satisfies the integral inequality

(1.5) 51 gn(u - k) I(u - k) (n xu h + txu ~~~)

+ (f(t,x~k) g(t,x,u))*#Itdx ) 0 V.# Co'(QV). 0

3) For almost all t e [0,T],

(1.6) 0  Y(a(txu) -30 + f(t#x*u)) - 0 (x = 0)

(1.6) 1  u - 0 (x - 1)

4) For almost all x e (O,t],

(1.7) u - u0 (x) (t -0)

Remark. From (1.4) it follows that the measure r(t~x.u) A and hence the
measure (t,x,u) - is absolutely continuous. (1.5) implies, in particular, that

ff (u -( x'u) h + f(t.x,u)) + g(t,x,u)*ldtdx - 0 v#e C(Q?,)

Hence ~-(t,x~u) h3L is a measure and the trace Y(a(t'x~u) ~) at the boundary pointsf exists.

We will first prove the uniqueness and stability of generalized solutions (12) andIthen study the existence (13. 14). Similar to (11-[3), we prove the existence by means of

the method of parabolic regularization, namely, consider

(1"1)- ( ((a(t.U) + C) + 4f(t'xu) + gattx'u) (C 0)

instead of (1.1) and

(1.2)c (e4t,UXu) + tI 4. f(t,x,u) - 0 (x - 0)0 ax

instead of (1.2)0. However, it is somewhat difficult to obtain some of the estimates on

the solutions of regularized problems (1.1)', (1.2)C, (1.2)1, (1.3). which we need for the

proof of existence.

, ,*11
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12. Uniqueness and Stability

Theorem I (stability of generalized solutions). Lot n,v be generalized solutions

of equation (1.1) with the boundary conditions (1.2) and initial conditions

e - ou, W v0  t- ) •

Than for almost all t C [0,T), we have

.t.-) - v(tx)Id 41"t 1u (X) - Vo1)1d

0 0

where

' - sup i ,(t'xAu 1 (t,x) + (1 - A)u2(t.acj)dAI
t0

A a consequence, we have

Theorm 2 (Uniqueness of generalized solutions). The boundary value problem (1.1),

(1.2), (0.3) has at most one generalized solution.

Proof of Theorem 1. For any nonnegative function # e c (Q,), e have (see 11)

(2.1 sgn(u - V) ((u - V) U- ha43gu 0) 1
I'1 a*tu a(t~x~v) + f(t~x.u) - f(t~x,,v3)

+ (g(tzu) - g(t,x,v))Idtdx ) 0

Since yu - yv - 0 (x - 1), this inequality holds even for those nonnegative functions

*6 with supp # C (0,) x (0,11 (see (21).

2.2 Phio) " *hT)dT 6 )di Ch > 0)

whore E(u) e C(R), 1(a) ) 0, 6(0) - 0 (101 o 1), 1(:)dr - 1.

Taking # - %~(x 2h)#(t) with # e c;(QT) and # 11 0. from (2.1) we obtain

i snlu - v)(lu - v)%(x - 2h), -

Ql- W at.x'u) hr- (t,V) + f(t,x~u) - f(t'wev)) 4h (x -2h) #

+ (IM~zN) - 9(t'3C'v))ph(z - 2h)#Idtdx b 0

~ '3-



J
Letting h 4 0 and using Lem 2 in 12) yield

j- - TJ ex gn(pa - yv)(Y(a(t~x,u) -& f(t,x.u))-

- Y(A(t,x,v) + 4 f(t,x~v))] X-0 t -

- J n1(u - v)(g(t,x,u) - g(t,x~v))$ftdx

noeco., by virtuae of the boundary condition (1.6 )o'

ifInt - ,I9'ftdx i f agn(u - v)(q(t~x.u) -g(t,x,v))#ltdx

Lot 0 <a < T and take (t) - h(t - ) -ph(tT) Then

JI Iu- I( (t - a) - 6h (t - 1) tdzc

)o If *gn(U - )(g(t,X~u) -g(t,x~v))(%Ct - ) - V(t - )dtdx

As h *0, this gives

IIu(r~x) - w(Tr,)Iaz 4 Iu(m.z) -V(B,X)Idz + N4 f U(t.x) - (tfx)Idtdg
0 0 a 0

Mena.. by Cronvall's Lasie we obtain

I u(TOX) -V(T,a)Idx *H!4 5 a Iu(ex) -v(a~x)Idx

0 0

and the desired result follows by letting a + 0.

-4-



3. zstiates on (uC)

In addition to the moothness condition on functions a, f and g, ve assume that

f(t,0.0) 1 0 for t 6 (0,T], fu(te0,u) 4 0 for t 6 [0,T), u 6 R and f + % is

bounded above for (tx) 6 Ge u 0 R mnd that compatibility condition, are satisfied so

that for any t ) 0, the regularized problem (1.1) z, (1.2):. (1.2)1, (1.3) has a solution

6 OC() n c3(T).

rosition 1 (Maxim principle).Le -• ~ ~Promomto 1~ (ancm prn-l) e max lu0J, a, - up(fxu + u),

2 - i Ifx(t,x,0) + g(t,x,0)l and A p. Then

At

(3.1) u (t, x)l Iax A
t , 

u-- for (t,x) e QTA-I

In particular, we have

(3.2) l (K for (t.x) e

with a contant K independent of C.

Proof. Lo
where k mmx (w4 +k)a 2 ( + -k + us-" At

whee .- (. Then

(0.3) (a + ) ( +si W+fA_9 Us2- + (A - f xu + qu)w

+ A 1 fX + qu)k - (ft(t'x #O) + g(t./,O))e*At 0

whee f denotes the value of f., + g a at some point.

We want to prove w 4 0. If it is not true, then there exists a point (to0 xO )

with 0 < t 0 4 t, 0 4 x 0 % 1. such that w(t 0 ,s 0 ) > 0, v(t 0 ,x 0 ) being the maximum of w

on C. We can prove that at (to.xO),

(3.4) ft 0, 01o, . 5 0t I

which contradicts (3.3). obviously, (3.4) holds If 0 ( so 4 1. By (1.2)1, Kg - I is

*1-5



impossible. if -c0 and f (t 0 ,0) <0, then A (t0,o) <0. since u(to,o) 0

end f(tO0) 1, fu(tOu) C 0 by assumption, we have

(a • ) +f' (a + )- ft+ u 0

at (toO). which contradicts (1.2). So (3.4) holds even If x 0 - 0.

Thus we have proved that w ( 0, I.e. u ( keAt . Similarly, we can prove that

xt At xt
-ke (u by setting u - u (v - k)e instead of U - a (w + k)e . The proof in

complete.

Proposition 2. h2
(3.5) II a(t#XUu~( fdt - N1

with a constant 1 independent of c.

Proof. Multiply (1.1), by u , integrate over QT and use (1.2)' and (3.2).

C0

Proposition 3. Assume that

S10" fu < 0 for (t.x) e O, u a g0  or fu > 0 for (t,x) • OT, u e 0. where

( . (uY a(t,x,u) a 0 for some (t,x) e 6T}
a

20. a = p itself and its derivatives are bounded uniformly in C for

(t,x) e O and u on any finite interval.

Then

(3.6) otj o' ' .,Sx N0 QT

with constants N2,3 independent of a.

Prof. Lot v w Differentiate (1.1) with respect to t and multiply

the resulting relation by sqn (v):

!S!:! . - ((v) !-t((a + ,,. + fl) -. l(v) + C) v
ot 3 (sg 3t

(3.7)

whre - ,(v) a (at + a ,v)w - sn;/v) v (ft + f,) + "gn,,(v)(t + ",v)
+. ' where

- ** ----

** . . .%
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0 (' T -)

* Tw of the terme an the right of (3.7), -ft ,v)at, amA -of't, t' see

to be treated further. Nxpressing at as (a + )p and using (1.1) € . we have

11 at *o L (..%(vat!) + s? m jlv)- (Aw)

(egs Mw(a + *)pv) +*uS11 lvk (a + Owv 4 awn(vp (L (a + O)I

L 3 (es (v)(a + Ow) + .gn WO k (a + 8)v + aw,,n(v)pv -

- SU(v)p( x + fuv) - aqn(v)pg•

Clearly

a~ x t ax~~'~~~a~w)f 4~v
ubsutitute thee Into (3.7) and throw down the second term an the right which is

nompoeltive. Then

(geq () L t(a + )w + fI) - - g (v)(a 4 e)pv, -

at Sx 11 Dt ax T

L I" (Of gow -f " , (e". + Qv) + "a ()p + ') +

e q1) (it (a + C) - Pf, + ftu1 v + egn IV)(9 - Pfx + ftx " ]g)

020, e obtain

t 1 t I
(3.9) ivd It C1 +Ca I I (1Il + 1Il)dtdx•

0 00

Ner ad below, o denotes a constant independent of €.

To coMplete the ~ we will make see of condition I. For 4efinitenees, we

supoe fu 40 for (t.) a .ug.

?. . .?7-



From 1.1)

-fuV ((a + Owl + f + g v
ex s~i+x gv

ultiplying it by agn (w) and integrating over (0,11 with respect to x yield

f gn n(wit wdx - su n (v)(a + O~wl X- - I sgn,'(v) (a+Cwt+1 1
0 0

(3.9)

I 1

+ sgnn(w)(f x + g)dx f sgn TI(w)vdx.
0 0

integrating

I (a + O1w + ) - - g

which is just (.1) C, and using (1.2) , we gee that

1

3.10 I(a + )vl C3 +  IIldx•
* 0

Using (3.10) in (3.9) and letting n + 0, we obtain

(3.11) " ] eulld x 4 C4 + CS Ivdx•
0 0

rrom condition 10 it is easy to see that there exists a constant F > 0 such that

(3.12) a -fu > 0 for (t,x) e OT, lul 4 K

Combining (3.11) with

ti
I f alwldtdx C C6

which follows from (3.5), gives

t I t I.0 1 (F f 1 - w e ftal x 4 C + s C5 j vldT •
O 0O0a

Hence, from (3.12) we obtain

•-6-
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, I I
f J' vld 4CO % + 1 C I " IvldT .

I 1 ;tX 1~
- Id lo+ClII vda

0 0 0

Thus Gromvall's Lesma gives the first estimate of (3.6) and hence the second one of (3.6)

follows too. The proof is comqplete.

Remark. It sm ditfficult to obtain sharper estimatesl (like f dx 4 x3.
0

8uomng up, we obtain

Theore 3+ For the family (u¢ of solutions of regularized problems (1. 1),

(12)c, (1.2) 1 , 11.3), we have estimate (3.2), (3.5), (3.6).

90
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14. Existence

In this section, we will further ssue that for any T 0 0 and t e (0.T),

(4.1) f I(t.1,s)d > 0
0

Without this condition, we can proceed in a similar way. However, in that case, a modified

definition of generalized solutions should be introduced.

According to Theorem 3, we can conclude that the family (u I is strongly compact

in LI(QT), namely, there exists = C * 0 such that {u ) converges both in LI (U)
ft

and pointwis &.e. to a function u e L(.) n RV(Q*).

That the limit function u satisfies condition 1) in the definition of generalized

solutions is proved just as in [1] and (2].

Let *e c C'(), # , 0, supp # C (0,T) x (0,1]. Multiplying (1.1) by

sgn nu - k)#, integrating over QT and letting n + 0 and e - C n 0 successively,

we obtain (similar to 12])

ff sgntu - k)i(u - k) -(a t,x~u) 17c+ f(t,x,u) - f~t~x,k)) "X +

+ (fx(tx,k) + g(t,x,u))jdtdx-

T IO au

T

+ f j gn(y" - k) + sgn(k)1 tA(tx,la) - A(t.x,k) -It .dt J, 0
0 'uI-1

u
where A(t,x,u) - f a(t,x,s)ds. First, this implies condition 2) in the definition of

0

generalized solutions.

Secondly, as in (21, ve can derive

(.gn(Y( - k) + sgn(k)[ (A(t,x,7) - A(t.xk)lu- I - 0

This and condition (4.1) imply 10.0)1.

The verification of (1.7) is just the same as in (1).

-to
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it remains to Obeck 01.6)0. For any *(t) a C;C.) 0ru(.)v a

0 t (aft~zou) + f~~~ )l #+~ d

1+ g2 ~~~) irg+fJ *h)ftdx
0 21 as

I 1 1J [(a + C) j+f)II*Ih4tdx -f I ( (a + 6) 33 fI4'iftdx
0 0 Is00

whome %() 1ph(O 2h) ais~± the function (2.2).

Notice that

a1 u T1h I21

0 0 aax0 0 0 0

I~ ~~J Ig1L htd If d#htdx
0 0 0 0

(Cg +)1 fU*. llhftdx + f gpdtdx 67Z 0
a 0 0 0 0

TJ I~~~j. T I a(A(txu ) +Ca

0a J4,,aoddxinJ f~ ~ )~~4Xdd

0

I T (A(tu,t + Ca X-1 dt + fT (A(t,x~u6)+ a)iiitdx

00 0 0

T I T u

.0 ~ A(tXU) K0tdx + ffa.(t,X,)d9Kdtdx

-Jf(tz,U)gaKdtdx
0 0



0I

T

(M f , \ ax
O0

T - ,(atx.u -, f (t.x.u) ~t

Thus for any e • (.T), we have

00

T N h

Iyda(tx.u) + f(t~x~u)) 1 4dt -0

0 a

and (1.6)o follows.

Theorem 4 (Kxistence of generalized solutions). The boundary value problem (1.1),

(1.2), (1.3) has a generalized solution u which can be obtained as the limit in L (Q)

of the family (ue) of solutions of regularized problems 1.1) 
C, 

(1.2), (1.2)10 and

(1.3).

1

-12
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20. ABSTRACT - cont'd.

!-u _ au + f(tx,u) + g(t,x,u)

(a(t,x,u) > 0)

with the boundary conditions

au + f 0 (x -0)ax
uI W0 (x- )

*i and the initial condition

u u (x) (t = 0)
0

are investigated, and the existence, uniqueness and continuous dependence on

the initial value of generalized solutions are proved under certain conditions.

In proving the existence, the key step is to establish estimates on solutions
au

u of regularized problem, especially the uniform estimate of I-I 1 and
Sat L

L L
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